

Tetrahedron 58 (2002) 7411-7421

TETRAHEDRON

Atropisomerism in linear tetrapyrroles

Stefan E. Boiadjiev and David A. Lightner*

Department of Chemistry, University of Nevada, Reno, NV 89557-0020, USA

Received 20 May 2002; revised 3 July 2002; accepted 11 July 2002

Abstract—Novel bilirubin and biliverdin congeners with propionic acids replaced by *o*-carboxyphenyl exhibit diastereomerism due to axial chirality about the carbon–carbon single bond linking the *o*-carboxyphenyl group to a pyrrole ring. Evidence for atropisomerism was found even in the monopyrrole precursor, ethyl 3,5-dimethyl-4-(*o*-carboxyphenyl)pyrrole-2-carboxylate. Like bilirubin, *o*-carboxyphenyl rubin **1a** adopts an intramolecularly hydrogen-bonded ridge-tile conformation in nonpolar solvents. In solutions containing optically active amines or human serum albumin **1a** exhibits intense bisignate exciton coupling-type induced circular dichroism for its long wavelength absorption near 400 nm. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Atropisomerism has become synonymous with biphenyl or biaryl stereochemistry, where sufficiently high barriers to rotation about the interconnecting sp^2-sp^2 C–C bond may lead to isolatable stereoisomers.¹ Studies of atropisomerism about a pyrrole to phenyl sp^2-sp^2 C–C bond are few,² and in the following we describe one such example (the monopyrrole **4**) and show how it can be detected in a dipyrrole (**3c**) and in various new linear tetrapyrrole derivatives. Among the latter, we describe the syntheses and stereochemistry of novel bilirubin (**1**) and biliverdin (**2**) analogs whose two propionic acids are replaced by *o*-carboxyphenyls (Fig. 1).

2. Results and discussion

2.1. Synthesis

Pyrroles of the type illustrated by 4 (Fig. 1), whether with an *o*-carboethoxyphenyl, *o*-carbomethoxyphenyl or *o*-carboxyphenyl group on the pyrrole nucleus are unknown, as are variants with these same *o*-substituents located *m* or *p* on the benzene ring. In principle, they might be prepared³ by a classical Fischer–Knorr synthesis from the appropriate 3-phenylpentane-2,4-dione, a reaction not yet reported, and a dione apparently unknown. An alternative synthesis might follow one developed by Chang and Bag⁴ using a Suzuki coupling of a β -bromopyrrole with phenylboronic acid. Although *m* and *p*-carboxy (or carboalkoxy) phenylboronic acids have been described in the literature, the *o*-isomer had not. We therefore decided to reserve the pyrrole syntheses of

m and p-carbo(alko)xyphenyl isomers to the Suzuki coupling method and pursue a more classical synthesis of 4 (Scheme 1). For the latter, we required 3-(o-carboxyphenyl)pentane-2,4-dione (5a), which could be produced in high yield by reaction of the sodium o-bromobenzoate with the sodium salt of pentane-2,4-dione.^{5,6} The resulting acid (5a) was converted to its methyl ester (5b) by reaction with diazomethane, but Fischer-Knorr condensation of it with diethyl oximinomalonate using zinc in acetic acid led to only a 26% isolated yield of pyrrole methyl ester 4b-along with substantial isocoumarin side-product, 4-acetyl-3methyl-1*H*-2-benzopyran-1-one.⁶ This mixture was separated only with considerably difficulty. The problems encountered in converting 5b to 4b were largely overcome by treating the acid (5a) under the same Fischer-Knorr pyrrole-forming condensation conditions to afford a 65% isolated yield of pyrrole acid 4a.

Saponification of **4a** or **4b** to its diacid and condensation with 5-bromomethylene-4-ethyl-3-methyl-2-oxo-1*H*-pyrrole⁷ afforded yellow dipyrrinone **3a** in 60% yield after treatment with CH₂N₂. Attempted oxidative coupling of dipyrrinone acid **3b** gave no verdin, apparently due to interference (by proton transfer) from the free CO₂H group; however, oxidative coupling of dipyrrinone ester **3a** gave a mixture of verdins (**2**) in 84% yield. Standard verdin reduction with NaBH₄ gave rubin ester **1b**, which was saponified to rubin diacid **1a** in 91% isolated yield.

2.2. Characterization

The structures of monopyrroles 4, dipyrrole 3 and tetrapyrroles 1 and 2 follow logically from the method of synthesis (see Scheme 1) and the compounds were characterized by spectroscopy, especially 13 C NMR, which showed the expected characteristic carbon resonances for the pyrrole units and the *o*-carboxy (or

Keywords: bilirubin; conformation; hydrogen bonding.

^{*} Corresponding author. Tel.: +1-775-784-4980; fax: +1-775-784-6804; e-mail: lightner@scs.unr.edu

Figure 1. Atropisomeric mesobilirubins (1), mesobiliverdins (2) and monopyrroles (4), with restricted rotation about the pyrrole-phenyl bond. The rubins (1) and verdins (2) are shown for simplicity in the conventional linear representations.

carboalkoxy) phenyl group. In 1–4, the four benzene ring hydrogens constitute an ABCD system of chemical shifts and splittings. In 4, for example, the most deshielded hydrogen (H_D) is *ortho* to the CO₂R group, as predicted by theory and confirmed by its NOE to the –OCH₃ hydrogens of 4b. The most shielded hydrogen (H_A) is *ortho* to the pyrrole ring (*meta'* to the CO₂R), as shown by an NOE between it and the pyrrole methyls at C(3) and C(5). The apparent first order coupling constants for H_D and H_A are in accord with predictions of one vicinal coupling (³J~7–8 Hz) and one W-coupling (⁴J~1 Hz) with the inner aromatic hydrogens. The assignments of the two remaining (inner) aromatic hydrogens, H_B and H_C, were made as *meta* and *para* to the CO₂R group, respectively, on the basis of an NOE seen between H_A and H_C, and between H_B and H_D.

Scheme 1. Reagents and conditions: (a) NaOH/EtOH-H₂O, Δ , then HCl; (b) NaBH₄/CH₃OH; (c) *p*-chloranil/HCOOH-CH₂Cl₂; (d) NaOH/EtOH-H₂O, Δ , then HNO₃; (e) 3-methyl-4-ethyl-5-bromomethylene-2-pyrrolinone, CH₃OH, Δ ; (f) CH₂N₂; (g) CH₃CH₂OH, DCC, DMAP; (h) diethyl oximinomalonate, Zn, HOAc, NaOAc; (i) Cu₂Br₂/EtOH, Δ , then HCl.

The apparent first-order coupling constants of H_B and H_C are consistent with predictions: two vicinal couplings $({}^{3}J{\sim}7{-}8 \text{ Hz})$ and one W-coupling $({}^{4}J{\sim}1 \text{ Hz})$.

The UV–Vis spectra of verdin **2** differed little from that of mesobiliverdin-XIII α dimethyl ester, while those of rubin **1a** differed little from the UV–Vis spectra of mesobilirubin-XIII α , indications that the *o*-carboxyphenyl groups do not perturb the tetrapyrrole chromophores and suggestive of an orthogonal relationship between the pyrrole ring and attached phenyl ring.

Rubin **1a** was more soluble in $CHCl_3$ than mesobilirubin-XIII α and sufficiently soluble in $CHCl_3$ for molecular

7412

Figure 2. (A) Partial ¹H NMR spectrum of monopyrrole **4b** in CDCl₃ at 25°C showing an *ABX*₃ spin system for the CH₂ protons of the ethyl ester. The inverted spectrum is of the spin-simulated ABX₃ system, showing only the AB part and generated using ν_A =2154.4 Hz, ν_B =2161.1 Hz, ν_X =679.8 Hz, J_{AB} =10.9 Hz, and $J_{AX}=J_{BX}=7.1$ Hz. The chemical shifts ν_A and ν_B , and the coupling constant J_{AB} were determined by spin-decoupling of X₃ and were used as input simulation parameters. (B) Stereo-diagrams illustrating diastereotopic CH_AH_B hydrogens of the ethyl ester atropisomeric **4b** enantiomers.

weight determination by vapor pressure osmometry at 45°C for concentrations in the range $10^{-2}-10^{-3}$ M. As with most rubins capable of intramolecular hydrogen bonding, **1a** was monomeric in CHCl₃: measured MW 655±30 g/mol (FW 685 g/mol). Surprisingly, its dimethyl ester (**1b**) was also monomeric in CHCl₃: measured MW 733±20 g/mol (FW 713 g/mol). This finding is unusual, as most rubin dimethyl esters are dimeric in CHCl₃.⁸ Apparently, the phenyls interfere with the conformation required for dimer formation.

On silica gel TLC chromatographic analysis, however, rubin ester **1b** (R_f 0.10, 1% CH₃OH in CH₂Cl₂) is more polar than rubin acid **1a** (R_f 0.54), as is typically found for rubins capable of intramolecular hydrogen bonding, e.g. mesobilirubin-XIII α (R_f 0.77, 1% CH₃OH in CH₂Cl₂) and its dimethyl ester (R_f 0.21). Somewhat contradictorily, these chromatographic data suggest that while **1a** is most probably intramolecularly hydrogen-bonded, it is also somewhat more polar than its mesobilirubin-XIII α analog possibly because the large π -electron rich phenyl groups of the *o*-benzoic acids are adsorbed to the silica more strongly than the simple CH₂-CH₂- units of the propionic acid chains.

2.3. Stereochemistry

First in monopyrrole **4b**, and then in its progeny, we detected an unexpected event in the ¹H NMR that provided the first indication of axial chirality, that **4b** is a mixture of enantiomers. Although all proton and carbon (APT) resonances had the expected, typical chemical shifts and splitting patterns in CDCl₃, the methylene group of the ethyl ester did not. In the ¹H NMR spectrum it showed at least 14 lines, suggesting an ABX₃ spin system (Fig. 2). Selective decoupling of X₃ at 1.36 ppm, revealed an AB pattern: two different, tightly coupled resonances at 4.310 and 4.323 ppm, and ²*J*=10.9 Hz. We take this as evidence for

S. E. Boiadjiev, D. A. Lightner / Tetrahedron 58 (2002) 7411-7421

Figure 3. Partial ¹H NMR spectra of verdin **2** in CDCl₃ at 25°C showing: (A) doubled sets of signals in the aromatic region, 2:3 or 3:2 integral ratio, and (B) doubled OCH₃ ester signals, 3:2 (right) and (left) doubled C(10) methine resonances. The resonance at 5.98 is due to the C(5)/C(15) methines.

diastereotopicity and thus the presence of an axis of chirality in **4b**. Although NMR evidence for atropisomerism could be detected in **4b**, attempts to resolve the acid (**4a**) by classical methods, including crystallization of salts with alkaloids and separation of its *l*-menthyl ester derivatives, were unsuccessful.

Extensive NMR and X-ray crystallographic studies firmly established that dipyrrinones with NHs and β-alkyl groups adopt the syn-Z configuration.9 This is particularly true in CDCl₃ solvent, where dipyrrinones form tightly intermolecularly hydrogen-bonded dimers,9-12 but also in (CD₃)₂SO, where the solvent participates in hydrogen bonding to the NHs.9 Where E-configuration isomers of dipyrrinones of this type have been prepared, they are unstable and revert to the more stable $Z^{9,13-15}$ NOE studies of 3 are consistent with the syn-Z configuration. Thus NOEs are seen between the pyrrole and lactam NHs, and between the C(5) methine and the C(7) methyl and C(3)–CH₂. NOEs were not detected between the C(5)-H and the pyrrole NH (as would come from the *anti-Z* configuration), nor between the C(5)-H and the lactam NH (as would come from the *E*-configuration). For dipyrrinones **3a** and **3b**, derived from monopyrroles 4b and 4a, we found no evidence for diastereotopicity of the sort seen in **4b**. However, in ethyl ester **3c**, again the ethyl ester CH_2 hydrogens exhibited diastereotopicity. The chemical shift difference of the H_A and H_B resonances in **3c** is similar to that of **4b**.

Consistent with the greater stability of the syn-Z configuration of their component dipyrrinones, NMR NOE and crystallographic studies show that verdins and rubins adopt the favored syn-Z configuration.9 The general shape of verdins is thus porphyrin-like, with a lock-washer type conformation, while that of rubins is bent into a ridge-tile shape.⁹ The local stereochemistry about the pyrrole-tophenyl bond is manifested differently in the tetrapyrroles due to an accumulation of two elements of chirality. Thus, verdin 2 can be expected to exist in at least two limiting diastereoisomeric forms, one with the o-CO₂CH₃ groups syn (relative to the average horizontal plane of the lock-washer shaped verdin) and one with them *anti* (Fig. 1). In the ${}^{1}\text{H}$ NMR spectrum of 2 one sees a doubling of the aromatic hydrogen signals (Fig. 3A) with the two sets of signals appearing in a 40:60 ratio. Doubled resonances also appear for the C(7)/C(13) methyls, the ester OCH_3 and the C(10) methine (Fig. 3B). The C(5)/C(15) methines do not, however, show a doubling (Fig. 3B, left). The

Figure 4. Partial ¹H NMR spectra of the C(10) CH₂ region of **1a** in (A) CDCl₃, (B) (CD₃)₂SO, (C) CD₃OD at 25°C. Only a singlet is found in (A). In (B), and to a very small extent in (C), a singlet is superimposed on a pair of doublets (65 and 12%, respectively). The singlet corresponds to C(10) CH₂ of the *anti* conformation, the *AB* pattern corresponds to the *syn*.

considerable shielding of the C(10) methine from its normal chemical shift of 6.9-7.0 ppm is probably due to π -facial shielding by the nearby phenyl rings.

Signal doubling of the type seen by ¹H NMR of verdin 2 is also seen in rubin ester **1b** and can be detected in diacid **1a** (Fig. 4). The C_2 -symmetric rubins (**1a**-anti, Fig. 1, and **1b**-anti) have their C(10) CH₂ hydrogens in identical electronic environments and these hydrogens appear as a singlet in CDCl₃. In the C_s -symmetric rubins (**1a**-syn, Fig. 1, and **1b**-syn) the C(10) CH₂ hydrogens lie in different electronic environments and their resonances appear at different chemical shifts as a four-line pattern, characteristic of an AB spin system. The integral ratio of the C(10) CH₂ resonances of **1a** thus serves as a sensitive probe of conformational (atropisomerism) preference.

The ¹H and ¹³C NMR of **1a** in CDCl₃ differed from that of

Figure 5. Ball and Stick (Ref. 16) conformational representation of the most stable conformer of 1a, with two dipyrrinones shaped like a ridge-tile and hydrogen bonded intramolecularly to the opposing *o*-carboxyphenyl groups.

1b and **2**, e.g. by exhibiting only a singlet for the C(10) CH₂, an indication that 1a adopted exclusively the anti conformation. Consistent with this assignment, the C(7) and C(13)methyls (1.81 ppm) and C(10) CH₂ (3.62 ppm) are more shielded in 1a than in mesobilirubin-XIII α (2.14 and 4.06 ppm, respectively). The anti diastereomer (Fig. 1) of 1a can adopt a ridge-tile conformation with both CO₂H groups hydrogen-bonded intramolecularly to dipyrrinones (Fig. 5),¹⁶ and the dipyrrinone NH chemical shifts (9.46 ppm, pyrrole; 10.47 ppm, lactam) provide supporting evidence. (In mesobilirubin-XIIIa, known to adopt an intramolecularly hydrogen-bonded ridge-tile conformation in CHCl₃, the pyrrole NH resonates at 9.16 ppm, and the lactam at 10.59 ppm.) More direct evidence for hydrogen bonding and the syn-Z configuration of the dipyrrinones in 1a-anti was found by NOE experiments. A ROESY spectrum indicated strong NOEs between the pyrrole and lactam NHs, and between the C(5)/C(15) methine and the $C(3)/C(17)-CH_2CH_3$ and the C(7)/C(13) methyls—all consistent with a syn-Z conformation in the dipyrrinones. A steady state NOE difference spectrum in CDCl₃ confirmed the syn-Z stereochemistry and also showed an NOE from the lactam NH to the o-carboxylic acid proton. The latter confirms that intramolecular hydrogen bonding is likely. A pulsed field gradient spin-echo NOE experiment showed that when the C(10) CH₂ protons were irradiated, NOEs were found to the phenyl ring o'-hydrogens as well as to the pyrrole NHs, thus strongly suggesting a rigid conformation around the pyrrole-phenyl bond in nonpolar solvents.

Apparently, the atropisomeric conformational homogeneity found for **1a** in CDCl₃ is forced by intramolecular hydrogen bonding (Fig. 5) because when this constraint is lifted, as found in polar solvents, the *syn* isomer may be detected by ¹H NMR (again by the C(10) CH₂ signal). In the most dramatic case, in (CD₃)₂SO, for example, we find a 35:65 ratio of *anti/syn* (Fig. 4). The same signal doubling and intensity ratio are observed in the ¹³C NMR spectrum of **1a** in (CD₃)₂SO. In CD₃OD, however, the *anti* still predominates, 88:12, over the *syn*. The C(10) CH₂ resonances from **1a** in (CD₃)₂SO did not change noticeably upon brief warming from 50 to 110°C, nor did they in CDCl₂CDCl₂ from 20 to 140°C for a prolonged time. A survey of the influence of solvents on the COOH, NH and C(10) CH₂

S. E. Boiadjiev, D. A. Lightner / Tetrahedron 58 (2002) 7411-7421

Table 1. Solvent influence on the carboxylic acid, pyrrole, lactam and C(10)-CH₂¹H NMR chemical shifts and anti/syn diastereomer ratio of 1a at 25°C

Solvent	ε^{a}	Acid	Lactam NH	Pyrrole NH	C(10)-CH ₂		Ratio	
					anti	syn	anti	syn
C ₆ D ₆	2.3	14.70	10.80	9.57	3.39		100	0
CDCl ₃	4.7	13.60	10.47	9.46	3.62		100	0
$THF-d_8$	7.3	13.75	10.21	9.51	3.58		100	0
CD_2Cl_2	8.9	13.74	10.46	9.37	3.61		100	0
CDCl ₂ CDCl ₂	10.4	13.45	10.19	9.30	3.54		100	0
$(CD_3)_2CO$	20.7	13.79	10.40	9.48	3.63		100	0
CD ₃ OD	32.6	-	_	-	3.72	3.75, 3.83	88	12
CD ₃ CN	36.2	_	10.35	9.30	3.54		100	0
(CD ₃) ₂ NCDO	36.7	13.10	sh 9.67, 9.64	10.38, 10.28	3.83	3.80, 3.88	42	58
$(CD_3)_2SO$	46.5	12.32	9.77, 9.71	10.24, 10.08	3.73	3.58, 3.78	35	65
CD ₃ COOD	6.2	_	_	_	3.93	3.88, 4.04	72	28
Pyridine-d ₅	12.3	12.47	sh 10.91, 10.59	10.90, 10.52	3.80	4.18, 4.31	76	24

Concentration 2×10^{-3} M.

^a Solvent dielectric constant for protiosolvents from Gordon, A. J.; Ford, R. A. The Chemist's Companion; Wiley: New York, 1972; pp 4–13.

Table 2. Solvent dependence of the NH ¹H NMR chemical shifts and diastereomer ratio of 1b

Solvent	Pyrrole NH	Lactam NH	Ratio ^a anti/syn	
C ₆ D ₆	11.04, 11.44	11.19, 11.68	37:63	
CDCl ₃	8.92, 10.85 (9.84, 10.97) ^b	9.82, 10.50 (10.21, 10.58) ^b	79:21	
CD ₃ CN	10.79, 10.88	10.53	48:52	
$(CD_3)_2SO$	10.13, 10.20	9.72, 9.79	46:54	

Solutions 2×10^{-3} M at 25° C.

^a Measured by the integral intensity of singlet *anti*-**1b** and AB *syn*-**1b** signals of the C(10)–CH₂ (the italicized chemical shifts dominate).

^b Concentration 8×10^{-3} M.

3.70 3.68 3.66 3.64 3.62 3.60 ppm

Figure 6. Variable temperature partial 1 H NMR spectrum of 2 in CDCl₂CDCl₂ solvent.

chemical shifts and the *anti/syn* diastereomer ratio is summarized in Table 1. Solvents that interfere with intramolecular hydrogen bonding appear to have the greatest influence in raising the relative amount of *syn* diastereomer, where at least one carboxyl group cannot engage in intramolecular hydrogen bonding and is freely solvated.

In the rubin dimethyl ester (1b), where intramolecular hydrogen bonding is not expected to play a dominating role, the anti/syn diastereomer ratios are also solvent dependent. Here, however, substantial amounts of syn diastereomer are present in aprotic solvents (Table 2), and the ratios do follow a logical progression. Curiously, whereas the NH chemical shifts of 1b-anti are noticeably concentration-dependent, with the pyrrole NH being deshielded by ~ 0.9 ppm and the lactam NH deshielded by ~ 0.4 ppm following a 3–4 fold concentration increase, in 1b-syn they are not affected much. Although the data might suggest an aggregation phenomenon, vapor phase osmometry studies of 1b (and 1a) clearly indicate that these compounds are monomeric in CHCl₃ in the concentration range 10^{-2} – 10^{-3} M at 45°C. While it is not unusual to find that bilirubins are monomeric in CHCl₃, when they are capable of intramolecular hydrogen bonding it is unusual to find bilirubin esters that are not dimeric in CHCl₃.8

2.4. Rotation barrier

Variable high temperature ¹H NMR experiments of verdin **2** in $CDCl_2CDCl_2$ solvent showed coalescence at 413 K (Fig. 6) of the diastereotopic methyl ester CH_3 groups. Diastereotopic because **2** is a mixture of interconverting **M**

Figure 7. UV–Vis spectra of 1.60×10^{-5} M rubin **1a**. In CHCl₃: ϵ_{4331}^{max} 59,300, ϵ_{419}^{sh} 57,400. In CH₃OH: ϵ_{421}^{max} 62,300, ϵ_{401}^{sh} 57,800. In (CH₃)₂SO: ϵ_{416}^{max} 59,700, ϵ_{399}^{max} 60,600.

and **P** helical conformers (with a low interconversion barrier ~10 kcal/mol), each capable of atropisomerism about the pyrrole to phenyl bond axis of chirality. Analysis by variable temperature ¹H NMR (Fig. 6) indicates a rate constant (K_c) at coalescence temperature of ~40 s⁻¹ from the equation: $K_c = \pi \Delta \nu \sqrt{2}$. Using the Eyring equation ($\Delta G^{\ddagger}=RT_c$ (23.76-ln(K_c/T_c)), where K_c =40 s⁻¹ and T_c =413 K, we estimate an interconversion barrier of $\Delta G^{\ddagger}=21.4$ kcal/mol for rotation about the pyrrole to phenyl bond—or too low to isolate the atropisomers.

2.5. Circular dichroism

The two dipyrrinone chromophores in bilirubins interact as an exciton system, as observed by UV–Vis spectroscopy and especially circular dichroism (CD) spectroscopy. Rubin **1a** and its dimethyl ester (**1b**) offer no exception. Thus, in (CH₃)₂SO, their UV–Vis spectra are dimpled, with ε_{399}^{max} 60,600, ε_{416}^{max} 59,700 for **1a** (Fig. 7) and ε_{397}^{max} 62,500, ε_{418}^{sh} 59,900 for **1b** (Fig. 8). In CHCl₃ and in CH₃OH, the spectra of **1a** are also dimpled (Fig. 7), with λ_{max} and ε ^{max}

Figure 8. UV–Vis spectra of 1.89×10^{-5} M rubin dimethyl ester **1b**. In CHCl₃: $\varepsilon_{415}^{max} 62,300$, $\varepsilon_{399}^{max} 61,800$. In CH₃OH: $\varepsilon_{411}^{max} 61,900$, $\varepsilon_{399}^{sh} 61,400$. In (CH₃)₂SO: $\varepsilon_{418}^{sh} 59,900$, $\varepsilon_{397}^{max} 62,500$.

Figure 9. Induced CD of rubin 1a in CHCl₃ in presence of cinchona alkaloids.

of nearly the same values as in $(CH_3)_2SO$. The bathochromic spectral shifts observed for the solvent changes in the UV–Vis spectra of **1a** (Fig. 7) are probably associated with a change toward more complete intramolecular hydrogen bonding in CHCl₃ (Fig. 5).

In the presence of chiral amines (cinchona alkaloids), intense bisignate long wavelength CD Cotton effects are observed for **1a** (but not **1b**) (Fig. 9). As with bilirubin, the signed order of the Cotton effects in CHCl₃ correlates with a negative exciton chirality (and negative torsion angle between relevant electric dipole transition moments) when quinine or cinchonidine are present, and with a positive exciton chirality when cinchonine or quinidine are present. The induced CD magnitudes are similar to those observed for bilirubin.

In alkaline buffer, and in the presence of human serum albumin (HSA), bisignate CD Cotton effects are also observed. The exciton chirality of **1a** in the presence of HSA is the same as that observed for bilirubin, and the magnitude of the CD is also similar (Fig. 10).

Figure 10. Induced CD of rubin 1a from complexation with HSA in aqueous alkaline buffers.

7418

3. Conclusions

Synthetic rubin **1a** is found to adopt preferentially a conformation shaped like a ridge-tile or half-opened book where the *o*-benzoic acids are engaged in intramolecular hydrogen bonding to the pigment's dipyrrinone components. As in natural bilirubin, the yellow pigment of jaundice, such intramolecular hydrogen bonding stabilizes the ridge-tile conformation. Unlike bilirubin the *o*-benzoic acid components present the opportunity for atropisomerism, for which a barrier of ~21 kcal/mol has been estimated by DNMR measurements.

4. Experimental

4.1. General procedures

Nuclear magnetic resonance spectra were obtained on a Varian Unity Plus spectrometer at 11.75 T magnetic field strength operating at ¹H frequency of 500 MHz and ¹³C frequency of 125 MHz. CDCl3 solvent was used throughout (unless otherwise specified), and chemical shifts are reported in δ ppm, referenced to the residual CHCl₃ ¹H signal at 7.26 ppm and CDCl₃ ¹³C signal at 77.00 ppm. J-modulated spin-echo (Attached Proton Test) and gHMBC experiments were used to obtain the ¹³C NMR assignments. The apparent multiplicities and values of spin-spin coupling constants $({}^{3}J, {}^{4}J)^{17}$ of all aromatic protons were confirmed by single-frequency homonuclear decoupling experiments and by the Varian simulation routine. All UV-Vis spectra were recorded on a Perkin-Elmer Lambda 12 spectrophotometer and the circular dichroism spectra were recorded on a JASCO J-600 dichrograph. Gas chromatography-mass spectrometry analyses were carried out on a Hewlett-Packard 5890A gas chromatograph (30 m DB-1 column) equipped with a Hewlett-Packard 5970 mass selective detector. HPLC analyses were carried out on a Perkin-Elmer series 410 high-pressure liquid chromatograph with a Perkin-Elmer LC-95 UV-Vis spectrophotometric detector (set at 420 nm for rubinoid compounds) equipped with a Beckman Altex ultrasphere IP 5 µm C-18 ODS column (25×0.46 cm) kept at 34°C. The flow rate was 1 mL per minute, and the mobile phase was 0.1 M di-noctylamine acetate buffer in 5% H₂O in methanol (v/v) with pH 7.7 at 22°C. Radial chromatography was carried out on Merck silica gel PF254 with CaSO4 binder preparative layer grade, using a Chromatotron (Harrison Research, Inc., Palo Alto, CA) with 1, 2, or 4 mm thick rotors and analytical thin-layer chromatography was carried out on J. T. Baker silica gel IB-F plates (125 µm layer). Melting points were determined on a Mel-Temp capillary apparatus and are uncorrected. The combustion analyses were carried out by Desert Analytics, Tucson, AZ.

4-Dimethylaminopyridine (DMAP) and dicyclohexylcarbodiimide (DCC) were from Aldrich. Di-*n*-octylamine was from Fluka. Methanol, chloroform, ethyl acetate and dichloromethane were HPLC grade from Fisher. Sodium borohydride, *p*-chloranil, sodium acetate, sodium hydroxide, anhydrous sodium sulfate, anhydrous magnesium sulfate, sodium nitrate, sodium bicarbonate, nitric acid, hydrochloric acid, 96% formic acid and ethanol were from Fisher. Argon and nitrogen were from Air Products. Solvents and reagents were used directly as provided by the vendor, except for the Fisher HPLC-grade solvents, which were further purified by standard procedures as described in detail in Ref. 18. The spectral data were obtained in spectral grade solvents, used as provided by Aldrich or by Fisher.

4.1.1. Ethyl 4-(o-carboxyphenyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (4a). To a preheated (\sim 80°C) mixture of 9.81 g (150 mgA) of zinc, 10.3 g (125 mmol) of anhydrous sodium acetate and 40 mL of acetic acid were added simultaneously in small portions 11.01 g (50 mmol) of 3-(o-carboxyphenyl)-pentane-2,4-dione $(5a)^5$ and a solution of 18.92 g (100 mmol) of diethyl oximinomalonate¹⁹ in 12 mL of acetic acid during 45 min while maintaining the temperature at $90-95^{\circ}$ C. After the additions were complete, the mixture was heated at vigorous reflux for 4 h and then poured into 400 mL of ice and water. After stirring for 30 min, the aqueous layer was decanted, and the semisolid product was dissolved in a minimum volume of 45°C ethanol (~65 mL) and then precipitated by slow addition of ice-cold water over 1 h. After cooling for an additional hour in an ice bath, the crude product was collected by filtration, washed with water and dried. Purification of the product by radial chromatography (1.5-5.0% v/v CH₃OH in CH₂Cl₂) and recrystallization of the isolated solid from ethyl acetate-hexane afforded 9.33 g (65%) of pyrrole **4a**. It had mp 199–200°C; ¹H NMR: δ 1.35 (3H, t, J=7.1 Hz), 2.03 (3H, s), 2.14 (3H, s), 4.32 (1H, s) ABX_3 , ${}^{3}J=7.1$ Hz, ${}^{2}J=11.0$ Hz), 4.34 (1H, ABX₃), ${}^{3}J=7.1$ Hz, ${}^{2}J=11.0$ Hz), 7.22 (1H, dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.0$ Hz), 7.42 (1H, ddd, ${}^{3}J=7.6$, 7.5 Hz, ${}^{4}J=1.0$ Hz), 7.55 (1H, ddd, ${}^{3}J=7.6$, 7.5 Hz, ${}^{4}J=1.2$ Hz), 8.04 (1H, dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.2$ Hz), 9.50 (1H, brs), 10.34 (1H, very brs) ppm; ¹³C NMR: δ 11.40, 11.73, 14.52, 60.11, 117.25, 123.12, 127.06, 127.33, 130.75, 130.92, 131.05, 131.98, 132.86, 135.77, 162.58, 171.22 ppm. MS *m*/*z* (rel. abund.): 287 (M⁺⁺, 100%), 270 (41%), 242 (55%), 214 (61%) amu. Anal. calcd for C₁₆H₁₇NO₄ (287.3): C, 66.88; H, 5.96; N, 4.88. Found: C, 66.79; H, 5.78; N, 4.79.

4.1.2. Ethyl 4-(o-methoxycarbonylphenyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (4b). Methyl ester 4b was obtained by the same procedure as for 4a by using 3-(omethoxycarbonylphenyl)pentane-2,4-dione $(2)^5$ —except that after separating the crude product, it was dissolved in 150 mL of CH₂Cl₂ and treated with 100 mL of 1 M aq NaOH with vigorous stirring for 6 h. The organic layer was washed with water, dried (anh. MgSO₄), and filtered. The solvent was evaporated under vacuum. Radial chromatography of the residue (hexane-ethyl acetate, gradient 5.5:1 to 2.5:1 v/v) followed by recrystallization of the isolated solid from ethanol-water afforded 3.95 g (26%) of pyrrole **4b**. It had mp 135–136°C; ¹H NMR: δ 1.36 (3H, t, J=7.1 Hz), 2.09 (3H, s), 2.10 (3H, s), 3.72 (3H, s), 4.30 (1H, ABX_3 , ${}^{3}J=7.1$ Hz, ${}^{2}J=10.9$ Hz), 4.32 (1H, ABX_3 , ${}^{3}J=$ 7.1 Hz, ²*J*=10.9 Hz), 7.21 (1H, dd, ³*J*=7.6 Hz, ⁴*J*=1.2 Hz), 7.39 (1H, ddd, ${}^{3}J=7.6$, 7.4 Hz, ${}^{4}J=1.2$ Hz), 7.52 (1H, ddd, ³*J*=7.4, 7.6 Hz, ⁴*J*=1.3 Hz), 7.90 (1H, dd, ³*J*=7.6 Hz, ⁴*J*= 1.3 Hz), 8.69 (1H, brs) ppm; 13 C NMR: δ 11.15, 11.84, 14.58, 52.02, 59.70, 117.13, 123.74, 126.91, 127.05, 129.69, 129.91, 131.31, 132.06, 132.67, 135.58, 161.81,

168.25 ppm. MS m/z (rel. abund.): 301 (M⁺⁺, 100%), 270 (8%), 256 (10%), 223 (83%) amu. Anal. calcd for C₁₇H₁₉NO₄ (301.3): C, 67.76; H, 6.36; N, 4.65. Found: C, 67.65; H, 6.38; N, 4.74.

4.1.3. 3-Ethyl-8-(*o*-methoxycarbonylphenyl)-2,7,9-trimethyl-1,10-dihydro-11*H*-dipyrrin-1-one (3a). A mixture of 4.31 g (15.0 mmol) of monoester **4a** (or 15.0 mmol of diester **4b**), 6.00 g (150 mmol) of sodium hydroxide, 90 mL of ethanol, and 25 mL of water was heated at reflux for 4 h. After cooling, the ethanol solvent was evaporated under vacuum, and the residue was diluted with 25 mL of 50% aq NaNO₃. The mixture was cooled to -20° C and slowly acidified with a solution of conc HNO₃ in 50% aq NaNO₃ (1:5 v/v). The product was separated by filtration, washed with cold water and dried overnight under vacuum. This crude diacid (obtained in a quantitative yield) was used immediately in the following step without further characterization.

A mixture of the diacid from above, 3.46 g (16.0 mmol) of 5-bromomethylene-4-ethyl-3-methyl-2-oxo-1*H*-pyrrole,⁷ 100 mL of anhydrous methanol and 1 drop of conc H_2SO_4 was heated at reflux for 10 h. Then approximately 35 mL of CH₃OH were removed by distillation, and the remaining solution was chilled overnight at -20° C. The product was separated by filtration, suspended in 100 mL of CH₃OH and 45 mL of CHCl₃ and treated for 10 min with ethereal diazomethane (generated from 100 mmol of N-nitroso-Nmethylurea). Excess CH₂N₂ was destroyed with acetic acid. Then the solvents were evaporated under vacuum, and the residue was purified by radial chromatography (2-3%)CH₃OH in CH₂Cl₂ v/v). Recrystallization of the isolated solid from CH₂Cl₂-CH₃OH afforded 3.29 g (60%) of dipyrrinone **3a**. It had mp 289–291°C (decomp); ¹H NMR: δ 1.19 (3H, t, J=7.6 Hz), 1.95 (3H, s), 2.01 (3H, s), 2.31 (3H, s), 2.56 (2H, q, J=7.6 Hz), 3.73 (3H, s), 6.20 (1H, s), 7.26 (1H, dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=0.9$ Hz), 7.38 (1H, ddd, ³*J*=7.6, 7.4 Hz, ⁴*J*=0.9 Hz), 7.52 (1H, ddd, ³*J*=7.6, 7.4 Hz, ${}^{4}J=1.1$ Hz), 7.89 (1H, dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.1$ Hz), 10.57 (1H, brs), 11.38 (1H, brs) ppm; 13 C NMR: δ 8.53, 10.11, 12.06, 15.03, 17.96, 52.07, 101.47, 122.46, 122.52, 122.90, 124.87, 126.56, 127.32, 129.80, 131.16, 131.83, 132.14, 132.59, 136.30, 148.37, 168.67, 174.16 ppm. Anal. calcd for C₂₂H₂₄N₂O₃ (364.4): C, 72.50; H, 6.64; N, 7.69. Found: C, 72.16; H, 6.41; N, 7.63.

4.1.4. 3-Ethyl-8-(o-ethoxycarbonylphenyl)-2,7,9-trimethyl-1,10-dihydro-11H-dipyrrin-1-one (3c). A mixture of 729 mg (2.00 mmol) of methyl ester **3a**, 30 mL of 10% aq NaOH, and 50 mL of ethanol was heated at vigorous reflux for 4.5 h. The ethanol solvent was removed by distillation, and the residue was cooled in an ice bath. Enough 10% aq HCl was added slowly to bring pH to <3. After stirring for 15 min, the crude dipyrrinone acid was separated by filtration, washed with water (3×50 mL) and dried under vacuum to afford 670 mg (96%) of **3b**, which did not melt but began to decompose at temperatures $\geq 190^{\circ}$ C). It had ¹H NMR ((CD₃)₂SO): δ 1.09 (3H, t, J=7.6 Hz), 1.79 (3H, s), 1.90 (3H, s), 2.06 (3H, s), 2.51 (2H, q, J=7.6 Hz), 5.96 (1H, s), 7.18 (1H, d, ³*J*=7.6 Hz), 7.36 (1H, t, ³*J*=7.6 Hz), 7.50 (1H, t, ³*J*=7.6 Hz), 7.73 (1H, d, ³*J*=7.6 Hz), 9.84 (1H, s), 10.53 (1H, s), 12.57 (1H, brs) ppm; ¹³C NMR ((CD₃)₂SO): δ 8.08, 9.96, 11.64, 14.85, 17.16, 97.62, 121.86, 122.16, 122.40, 122.84, 126.35, 127.68, 129.04, 129.54, 130.43, 132.07, 133.91, 134.90, 147.23 ppm.

To a mixture of 350 mg (1.00 mmol) of crude acid 3b from above, 4 mL of anh CH₂Cl₂, 248 mg (1.20 mmol) of DCC, and 12.2 mg (0.1 mmol) of DMAP was added 175 µL (3.00 mmol) of anhydrous ethanol, and the mixture was stirred for 16 h. The solid by-product was separated by filtration. The filtrate was diluted with 100 mL of CH₂Cl₂ and washed consecutively with 5% aq NaHCO₃ (100 mL), 5% aq HCl (50 mL) and water (2×50 mL). After drying (anh Na₂SO₄), filtration and evaporation, the residue was purified by radial chromatography $(2-3\% \text{ CH}_3\text{OH} \text{ in } \text{CH}_2\text{Cl}_2 \text{ v/v})$. Recrystallization of the pure solid fractions from CH₂Cl₂-CH₃OH afforded 309 mg (82%) of dipyrrinone ethyl ester **3c**. It had mp 246–247°C; ¹H NMR: δ 1.13 (3H, t, J=7.0 Hz), 1.19 (3H, t, J=7.7 Hz), 1.95 (3H, s), 2.00 (3H, s), 2.30 (3H, s), 2.56 (2H, q, *J*=7.7 Hz), 4.15 (1H, *A*BX₃, ³*J*=7.0 Hz), 4.16 (1H, *AB*X₃, ³*J*=7.0 Hz), 6.19 (1H, s), 7.26 (1H, dd, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.0$ Hz), 7.38 (1H, ddd, ${}^{3}J=7.5$, 7.6 Hz, ${}^{4}J=1.0$ Hz), 7.51 (1H, ddd, ${}^{3}J=7.5$, 7.6 Hz, ${}^{4}J=$ 1.3 Hz), 7.88 (1H, dd, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.3$ Hz), 10.58 (1H, brs), 11.40 (1H, brs) ppm; ¹³C NMR: δ 8.51, 10.10, 12.03, 13.92, 15.04, 17.97, 60.74, 101.41, 122.43, 122.50, 123.19, 125.01, 126.65, 127.34, 129.64, 131.00, 131.80, 132.44, 132.82, 136.10, 148.36, 168.50, 174.14 ppm. Anal. calcd for C₂₃H₂₆N₂O₃ (378.5): C, 72.99; H, 6.93; N, 7.40. Found: C, 72.64; H, 6.77; N, 7.39.

4.1.5. 3.17-Diethyl-8.12-bis-(o-methoxycarbonylphenyl)-2,7,13,18-tetramethyl-(21H,24H)-bilin-1,19-dione (2). A mixture of 729 mg (2.00 mmol) of dipyrrinone **3a**, 1.23 g (5.00 mmol) of p-chloranil, 440 mL of CH₂Cl₂, and 22 mL of 96% formic acid was heated at reflux for 24 h. The volume of the mixture was reduced to one-half by distillation, and reflux was continued for 6 h. Then the mixture was chilled overnight at -20° C. A solid separated and was removed by filtration and discarded. The blue filtrate was carefully neutralized with 5% aq NaHCO3 until effervescence ceased then washed with 4% aq NaOH $(2 \times 100 \text{ mL})$, H₂O $(4 \times 100 \text{ mL})$, and dried (anh Na₂SO₄). After filtration and evaporation of the solvent under vacuum, the crude product was purified by radial chromatography (gradient CH₂Cl₂-CH₃CO₂H-CH₃OH=100:3:3 to 100:3:7 v/v/v). The combined pure fractions were washed with 1% aq NaHCO3 and H2O, then dried (anh Na2SO4). After filtration, the solution was evaporated and the residual was recrystallized from CHCl₃-hexane to afford 594 mg (84%) of syn and anti mesobiliverdins (2). The solid had mp 284–288°C; ¹H NMR: δ 1.25 (6H, t, *J*=7.7 Hz), 1.86 (6H, s), 1.92 (2.4H, s), 1.95 (3.6H, s), 2.54 (4H, q, J=7.7 Hz), 3.68 (2.4H, s), 3.71 (3.6H, s), 5.98 (2H, s), 5.99 (0.6H, s), 6.01 (0.4H, s), 7.15 (0.8H, dd, ${}^{3}J=7.8$ Hz, ${}^{4}J=1.0$ Hz), 7.17 $(1.2H, dd, {}^{3}J=7.8 Hz, {}^{4}J=1.0 Hz), 7.36 (2H, ddd, {}^{3}J=7.5,$ 7.6 Hz, ${}^{4}J=1.0$ Hz), 7.47 (0.8H, ddd, ${}^{3}J=7.5$, 7.8 Hz, ⁴*J*=1.3 Hz), 7.50 (1.2H, ddd, ³*J*=7.6, 7.8 Hz, ⁴*J*=1.3 Hz), 7.86 (1.2H, dd, ³J=7.6 Hz, ⁴J=1.3 Hz), 7.89 (0.8H, dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.3$ Hz), 8.29 (2H, brs), 8.75 (1H, very brs) ppm; ¹³C NMR: δ8.36, 9.94, 9.95, 14.42, 17.85, 52.18, 52.22, 96.29, 117.30, 117.50, 127.59, 127.61, 128.14, 128.39, 128.53, 128.55, 130.16, 130.36, 131.19, 131.42, 131.48, 131.57, 131.94, 132.12, 133.94, 134.19, 139.83,

139.86, 140.21, 141.78, 141.86, 146.68, 149.40, 149.54, 167.64, 168.01, 172.57, 172.59 ppm. Anal. calcd for $C_{43}H_{42}N_4O_6$ (710.8): C, 72.66; H, 5.96; N, 7.88. Found: C, 72.60; H, 5.99; N, 7.92.

4.1.6. 3,17-Diethyl-8,12-bis-(o-methoxycarbonylphenyl)-2,7,13,18-tetramethyl-(10H,21H,23H,24H)-bilin-1,19dione (1b). To a blue solution of 355 mg (0.500 mmol) of mesobiliverdins 2 in 8 mL of $CHCl_3$ and 75 mL of anhydrous CH₃OH kept at 10°C was slowly added sodium borohydride (1.13 g, 30.0 mmol) during 20 min. while purging the mixture with N₂. After stirring for 15 min, the vellow mixture was diluted with 300 mL of ice-cold water, slowly acidified by addition of 8 mL of acetic acid followed by 6 mL of 10% aq HCl. The product was extracted with $CHCl_3$ (4×100 mL). The combined extracts were washed with water until neutral, and then dried (anh Na₂SO₄). After filtration, the solvent was evaporated under vacuum, and the residue was purified by radial chromatography (gradient 1-3% CH₃OH in CH₂Cl₂ v/v) and recrystallization from CH₂Cl₂-CH₃OH to afford 327 mg (92%) of mesobilirubin dimethyl esters (1b). The solid had mp 268–271°C (decomp $>250^{\circ}$ C); ¹H NMR (in CDCl₃ solvent ratio *anti/syn*= 79:21): δ 1.05 (1.2H, t, J=7.6 Hz), 1.13 (4.8H, t, J=7.6 Hz), 1.61 (1.2H, s), 1.80 (4.8H, s), 1.85 (4.8H, s), 1.89 (1.2H, s), 2.38 (0.8H, q, J=7.6 Hz), 2.46 (3.2H, q, J=7.6 Hz), 3.66 (1.2H, s), 3.95 (4.8H, s), 3.73 (1.6H, s), 3.74, 3.95 (0.4H, AB, ²J=15.8 Hz), 5.97 (1.6H, s), 5.99 (0.4H, s), 6.98-7.11 (2H, 2×m), 7.33-7.41 (4H, m), 7.72-7.74 (0.4H, m), 7.80 (1.6H, dd, ³J=7.7 Hz, ⁴J=1.1 Hz), 8.92 (1.6H, brs), 9.82 (1.6H, brs), 10.50 (0.4H, brs), 10.85 (0.4H, brs) ppm; ¹H NMR (in (CD₃)₂SO solvent ratio anti/syn=46:54): δ 1.09 (3H, t, J=7.6 Hz), 1.10 (3H, t, J=7.6 Hz), 1.71 (3H, s), 1.72 (3H, s), 1.78 (3H, s), 1.79 (3H, s), 2.51 $(2 \times 2H, 2 \times q, J =$ 7.6 Hz), 3.51 (3H, s), 3.54 (3H, s), 3.56, 3.75 (1H, AB, ²*J*=16.9 Hz), 3.67 (1H, s), 5.91 (1H, s), 5.92 (1H, s), 6.72 (1H, dd, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.1$ Hz), 6.78 (1H, dd, ${}^{3}J=7.6$ Hz, $^{4}J=1.1$ Hz), 7.26–7.33 (3H, m), 7.37 (1H, ddd, $^{3}J=7.5$, 7.5 Hz, ⁴J=1.5 Hz), 7.67 (1H, dd, ³J=7.5 Hz, ⁴J=1.5 Hz), 7.69 (1H, dd, ³*J*=7.7 Hz, ⁴*J*=1.5 Hz), 9.72 (1.1H, s), 9.79 (0.9H, s), 10.13 (0.9H, s), 10.20 (1.1H, s) ppm; ¹³C NMR (in CDCl₃ solvent the shifts of dominant anti isomer are italicized): 8 7.97, 8.13, 9.86, 10.14, 14.73, 14.78, 17.80, 17.83, 23.42, 23.72, 51.84, 52.78, 99.55, 100.63, 122.77, 122.95, 123.00, 123.40, 123.45, 123.75, 123.87, 126.28, 126.65, 128.74, 129.00, 129.35, 129.66, 130.90. 131.07, 131.08, 131.11, 131.70, 132.44, 132.60, 132.94, 135.60, 136.00, 147.13, 147.43, 168.21, 169.57, 173.75, 174.31 ppm; ¹³C NMR (in (CD₃)₂SO solvent): δ 8.07, 8.08, 9.68, 9.70, 14.85, 14.86, 17.15, 17.16, 23.76, 23.99, 51.68, 51.72, 97.69, 121.77, 121.85, 121.97, 122.13, 122.15, 122.27, 123.13, 123.17, 126.24, 126.38, 128.30, 128.45, 128.97, 129.14, 129.88, 130.33, 130.73, 131.00, 131.21, 131.35, 132.17, 135.15, 135.33, 147.12, 147.22, 167.36, 167.45, 171.96, 171.98 ppm. Anal. calcd for C₄₃H₄₄N₄O₆ (712.8): C, 72.45; H, 6.22; N, 7.86. Found: C, 72.15; H, 6.33; N, 7.84.

4.1.7. 8,12-bis-(*o*-Carboxyphenyl)-**3,17-diethyl-2,7,13, 18-tetramethyl-(10***H***,21***H***,23***H***,24***H***)-bilin-1,19-dione** (**1a**). A solution of 285 mg (0.400 mmol) of mesobilirubin dimethyl esters (**1b**) and 30 mL of ethanol was saturated with Ar for 20 min. Then 6 mL of 1 M aq NaOH (6 mmol) was added and the mixture was heated at reflux for 90 min under Ar. After cooling, the mixture was diluted with 150 mL of H₂O and 150 mL of CHCl₃ then poured into 150 mL of 1% aq HCl. The product was extracted with CHCl₃ (4×50 mL), washed with H_2O (4×100 mL) and dried (anh Na₂SO₄). After filtration, the solvent was evaporated under vacuum, and the residue was purified by radial chromatography (gradient 1-2% CH₃OH in CH₂Cl₂ v/v) and recrystallization to afford 248 mg (91%) of bright yellow syn and anti mesobilirubins (1a). The solid had mp $333-338^{\circ}C$ (decomp >305°C); ¹H NMR (in CDCl₃) solvent—exclusively anti): δ 1.14 (6H, t, J=7.6 Hz), 1.81 (6H, s), 1.91 (6H, s), 2.49 (4H, q, J=7.6 Hz), 3.62 (2H, s), 6.08 (2H, s), 7.18 (2H, dd, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.0$ Hz), 7.47 (2H, ddd, ${}^{3}J=7.5$, 7.8 Hz, ${}^{4}J=1.0$ Hz), 7.56 (2H, ddd, ${}^{3}J=$ 7.5, 7.5 Hz, ${}^{4}J=1.5$ Hz), 8.29 (2H, dd, ${}^{3}J=7.8$ Hz, ${}^{4}J=$ 1.5 Hz), 9.46 (2H, s), 10.47 (2H, s), 13.60 (2H, brs) ppm; ¹H NMR (in $(CD_3)_2$ SO solvent ratio *anti/syn*=35:65): δ 1.09 (2.1H, t, J=7.6 Hz), 1.10 (3.9H, t, J=7.6 Hz), 1.73 (3.9H, s), 1.77 (2.1H, s), 1.78 (2.1H, s), 1.79 (3.9H, s), 2.51 (2×2H, 2×q, J=7.6 Hz), 3.57, 3.78 (1.3H, AB, ²J=16.8 Hz), 3.74 (0.7H, s), 5.91 (0.7H, s), 5.93 (1.3H, s), 6.63 (1.3H, dd, ${}^{3}J=7.0$ Hz, ${}^{4}J=1.0$ Hz), 6.82 (0.7H, dd, ${}^{3}J=7.0$ Hz, ${}^{4}J=$ 1.0 Hz), 7.23–7.31 (2×2H, 2×m), 7.66 (1.3H, dd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ =1.4 Hz), 7.70 (0.7H, dd, ${}^{3}J$ =7.5 Hz, ${}^{4}J$ =1.4 Hz), 9.71 (0.7H, s), 9.77 (1.3H, s), 10.08 (0.7H, s), 10.24 (1.3H, s), 12.32 (2H, s) ppm; ¹³C NMR (in CDCl₃ solvent): δ 8.03, 9.86, 14.84, 17.86, 24.20, 100.89, 123.56, 123.88, 124.17, 124.68, 127.75, 128.78, 129.91, 131.52, 131.53, 132.73, 133.73, 138.51, 148.54, 171.92, 174.92 ppm; ¹³C NMR (in $(CD_3)_2$ SO solvent the shifts of dominant *syn* are italicized): δ 8.08, 9.86, 9.89, 14.87, 17.17, 17.18, 23.91, 24.16, 97.77, 97.86, 122.02, 122.05, 122.10, 122.15, 122.60, 122.70, 123.06, 123.11, 126.18, 126.24, 128.24, 128.41, 128.82, 129.04, 130.06, 130.20, 130.43, 130.46, 132.02, 132.08, 132.89, 132.96, 134.80, 134.89, 147.09, 147.21, 168.94, 169.07, 171.96, 171.97 ppm. Anal. calcd for C₄₁H₄₀N₄O₆ (684.8): C, 71.91; H, 5.89; N, 8.18. Found: C, 72.06; H, 5.85; N, 8.14.

Acknowledgements

We thank the US National Institutes of Health (HD 17779) for support of this work. Stefan E. Boiadjiev is on leave from the Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia.

References

- Eliel, E.; Wilen, S. H. Stereochemistry of Carbon Compounds. Wiley: New York, 1994; Chapter 14.
- (a) Alazard, J. P.; Boyé, O.; Gillet, B.; Guénard, D.; Beloeil, J. C.; Thal, C. Bull. Soc. Chim. Fr. 1993, 779–787.
 (b) Furusho, Y.; Aida, T.; Inoue, S. J. Chem. Soc., Chem. Commun. 1994, 653–655. (c) (N-Aryl pyrroles) Fogassy, K.; Harmat, V.; Böcskei, Z.; Tárkányi, G.; Töke, L.; Faigl, F. Tetrahedron: Asymmetry 2000, 11, 4771–4780. (d) Klvańa, R.; Pohl, R.; Pawlas, J.; Čejka, J.; Dvořáková, H.; Hrabal, R.; Böhm, S.; Kratochvil, B.; Kuthan, J. Collect. Czech. Chem. Commun. 2000, 65, 651–666.

- 3. (a) Fischer, H.; Orth, H. Die Chemie des Pyrroles, Akademische: Leipzig, 1934; Vol. 1. pp 62-66.
 (b) Kleinspehn, G. G. J. Am. Chem. Soc. 1955, 77, 1546-1548.
- 4. (a) Chang, C. K.; Bag, N. J. Org. Chem. 1995, 60, 7030–7032.
 (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
- Bacon, R. G. R.; Murray, J. C. F. J. Chem. Soc., Perkin Trans 1 1975, 1267–1272.
- 6. Aalten, H. L.; van Koten, G.; Vrieze, K.; van der Kerk-van Hoof, A. *Recl. Trav. Chim. Pays-Bas* **1990**, *109*, 46–54.
- 7. Shrout, D. P.; Lightner, D. A. Synthesis 1990, 1062-1065.
- Brower, J. O.; Huggins, M. T.; Boiadjiev, S. E.; Lightner, D. A. Monatsh. Chem. 2000, 131, 1047–1053.
- 9. For leading references, see Falk, H. *The Chemistry of Linear Oligopyrroles and Bile Pigments*. Springer: Wien, 1989.
- Trull, F. R.; Ma, J. S.; Landen, G. L.; Lightner, D. A. Isr. J. Chem. 1983, 23(2), 211–218.
- 11. Xie, M.; Holmes, D. L.; Lightner, D. A. *Tetrahedron* **1993**, *49*, 9235–9250.
- 12. Huggins, M. T.; Lightner, D. A. Monatsh. Chem. 2001, 132, 203-221.

- Lamola, A. A.; Braslavsky, S. E.; Schaffner, K.; Lightner, D. A. Photochem. Photobiol. 1983, 37, 263–270.
- 14. Ma, J. S.; Lightner, D. A. Tetrahedron 1991, 47, 3719-3726.
- 15. Boiadjiev, S. E.; Lightner, D. A. Tetrahedron 1999, 55, 10871–10886.
- 16. The molecular dynamics calculations used to find the global energy minimum conformation of **1a** were run on an SGI Octane workstation using version 6.5.1 of Sybyl (Tripos Assoc., St. Louis, MO) as described in Person, R. V.; Peterson, B. R.; Lightner, D. A. J. Am. Chem. Soc. **1994**, 116, 42–59. The Ball and Stick drawings were created from the atomic coordinates using Müller and Falk's 'Ball and Stick' program for the Macintosh (http://www.orc.uni-Linz.ac.at/mueller/ ball_stick.html).
- Lambert, J. B.; Shurvell, H. F.; Lightner, D. A.; Cooks, R. G. Organic Structural Spectroscopy. Prentice-Hall: New York, 1998; p 69.
- Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals. 3rd ed. Pergamon: England, 1988.
- Paine, III., J. B.; Dolphin, D. J. Org. Chem. 1985, 50, 5598-5604.